Neural Control of Standing Posture

نویسندگان

  • Craig Tokuno
  • Chad Anderson
چکیده

When humans are asked to stand normally, they are not completely motionless. Rather, small amounts of body movement, termed postural sway, can be observed. Although the postural sway of standing has been well described, the manner in which this sway is neurally controlled and its influence in tasks involving postural re-stabilization are not known. Therefore, the aim of this thesis was to investigate the neural control of human standing posture, with a special emphasis on 1) whether the neuromuscular responses to an unexpected perturbation are influenced by the postural sway, 2) whether spinallymediated changes occur as a function of postural sway position and/or direction, and 3) whether the excitability of the cortical and corticospinal pathways are altered with respect to postural sway. In each study, subjects stood quietly on a force platform. For Studies I-III, the anteroposterior center of pressure (COP) signal from the force platform was monitored online such that when the position and/or velocity of the COP was of the desired magnitude and direction, a perturbation was administered to the subject. The perturbation consisted of either a sudden support surface translation (Study I) or a percutaneous electrical stimulation to the posterior tibial nerve (Studies II-IV). In Study IV, a perturbation, in the form of either a transcranial magnetic (TMS) or electric (TES) stimulation to the left motor cortex, was triggered at a random time, regardless of the COP signal. The neuromuscular responses to the mechanical, electrical or magnetic perturbations were assessed by measuring the body kinematics from a motion capture system or electromyographic (EMG) recordings from surface electrodes placed over various lower limb muscles. Specific dependent measures included the number of stepping responses, the latencies and amplitudes of the EMG recordings, the peak-to-peak amplitudes of the Hoffmann reflex (Hreflex) and M-wave from tibial nerve stimulation, as well as the peak-to-peak amplitudes of the motor evoked potentials (MEPs) elicited by TMS and TES. Study I indicated that when subjects were standing normally, the position of postural sway influenced the postural responses to an unexpected surface translation. EMG activity of various lower limb and trunk muscles were generally delayed in time and larger in amplitude when subjects were swaying in the direction opposite to the upcoming perturbation. The altered postural responses may be related to the ongoing modulation of the synaptic efficacy, as reflected by the size of the H-reflex, to the triceps surae Ia pathways. In Studies II-IV, it was found that when subjects were swaying in the forward as compared to the backward direction or position, depolarization of the soleus and medial gastrocnemius motoneurone pools, via synaptic transmission of the Ia afferents, was easier to achieve. However, this sway directionand sway position-dependent modulation of neural excitability was limited to the spinal and corticospinal levels. Study IV revealed that TMSand TES-evoked MEPs were similarly modulated during the naturally occurring sway of normal standing, suggesting that the excitability of the motor cortex was not dependent on postural sway. A facilitation in cortical excitability, as shown by the differential MEP response between TMS and TES, was however found during normal as compared supported (i.e. no postural sway) standing. This thesis demonstrates that human standing posture is controlled via an overall enhancement of cortical excitability, concurrently with an ongoing sway-dependent modulation of spinal and corticospinal processes. The constantly changing neural inputs to the motoneurone pool may give insight into the influence of postural sway to the neuromuscular responses to an unexpected perturbation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی اثر خستگی بر تعادل در ورزش‌کاران با کف پای صاف

Objectives: Considering that feet are the lowermost body part and provide a relatively small balancing area within the reliance surfac (especially while standing on one foot), it seems that minor biomechanical changes within the reliance surface could affect posture control strategy, which can be exacerbated in fatigue conditions. Objective: The aim of this research was to investigate effect ...

متن کامل

Postural control during quiet bipedal standing in rats

The control of bipedal posture in humans is subject to non-ideal conditions such as delayed sensation and heartbeat noise. However, the controller achieves a high level of functionality by utilizing body dynamics dexterously. In order to elucidate the neural mechanism responsible for postural control, the present study made use of an experimental setup involving rats because they have more acce...

متن کامل

Influence of Transcranial Direct Current Stimulation to the Cerebellum on Standing Posture Control

Damage to the vestibular cerebellum results in dysfunctional standing posture control. Patients with cerebellum dysfunction have a larger sway in the center of gravity while standing compared with healthy subjects. Transcranial direct current stimulation (tDCS) is a noninvasive technique for selectively exciting or inhibiting specific neural structures with potential applications in functional ...

متن کامل

Destabilizing Effect on the Control Mechanism of Quiet Standing

The delay of the sensory-motor feedback loop is a destabilizing factor within the neural control mechanism of quiet standing. The purposes of this study were 1) to experimentally identify the neuro-musculo-skeletal torque generation process during standing posture, and 2) to investigate the effect of the delay induced by this system on the control mechanism of balance during quiet standing. Ten...

متن کامل

Complex feature analysis of center of pressure signal for age-related subject classification

Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...

متن کامل

Generation of the Human Biped Stance by a Neural Controller Able to Compensate Neurological Time Delay

The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007